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Abstract. Obtaining high accuracy singular triplets for large sparse matrices is a significant6
challenge, especially when searching for the smallest triplets. Due to the difficulty and size of these7
problems, efficient methods must function iteratively, with preconditioners, and under strict memory8
constraints. In this research, we present a Golub-Kahan Davidson method (GKD), which satisfies9
these requirements and includes features such as soft-locking with orthogonality guarantees, an inner10
correction equation similar to Jacobi-Davidson, locally optimal +k restarting, and the ability to find11
real zero singular values in both square and rectangular matrices. Additionally, our method achieves12
full accuracy while avoiding the augmented matrix, which often converges slowly due to the difficulty13
of interior eigenvalue problems. We describe our method in detail, including implementation issues14
that may arise. Our experimental results confirm the efficiency and stability of our method over the15
current implementation of PHSVDS in the PRIMME software package [19].16
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1. Introduction. Assuming a large sparse matrix, A ∈ <m,n with m ≥ n, the18

economy size singular value decomposition (SVD) is given by19

(1) A = UΣV T ,20

where U ∈ <m,n and V ∈ <n,n are orthonormal bases and Σ = diag(σ1, . . . , σn) ∈21

<n,n with σ1 ≤ σ2 ≤ · · · ≤ σn is a diagonal matrix containing the singular values22

of A. The singular triplets of A are defined as (ui, σi, vi) given by the SVD. This23

decomposition has become increasingly important and is frequently used in fields like24

statistics for principal component analysis [9], computer science for image compression25

[14] and web search clustering [12], and genomics for expression data processing [1].26

More specifically, finding the smallest singular triplets is useful for total least squares27

problems and the determination of the effective rank of a matrix [6].28

When the matrix A is large enough, it can be difficult to compute the SVD with29

dense methods. Furthermore, applications often require only a few of the largest or30

smallest singular values and vectors. These observations have lead to iterative algo-31

rithms like Golub-Kahan-Lanczos (GKL) also known as Lanczos bidiagonalization.32

However, when the solution requires many iterations, it may be infeasible to store the33

previous vectors necessary for GKL with full or partial reorthogonalization. To solve34

this, restarted versions of GKL that limit the maximum basis size such as IRLBA [2]35

have been developed. Additionally, other restarted methods have emerged, such as36

Jacobi-Davidson (JDSVD), the Preconditioned Hybrid SVD method (PHSVDS), and37

the Preconditioned Locally Minimal Residual method (PLMR SVD). These methods38

can also take advantage of preconditioning, which can provide significant speedups39

for difficult problems.40
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2 STEVEN GOLDENBERG

In general without preconditioning or +k restarting, these methods build Krylov41

spaces on the normal equations matrix C = ATA or on the augmented matrix,42

(2) B =

[
0 AT

A 0

]
.43

We denote a k-dimensional Krylov space on matrix A with initial vector v1 by44

Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1}. Additionally, ‖ · ‖ denotes the Euclidean45

norm and εmach = 2.2E-16 denotes the machine precision. Frequently, methods that46

build their search space with B, like JDSVD and PLMR SVD, are able to achieve47

accuracy of ‖rB‖ < O(‖A‖εmach) when searching for the smallest singular triplets,48

where rB is the eigenvalue residual on B. This is directly related to the left and49

right singular value residuals ru = ATu − σv and rv = Av − σu as rB = [ru; rv].50

However, this approach mirrors the singular values of A across zero [13]. Therefore,51

searching for the smallest singular triplets is a highly interior problem which can slow52

convergence. Worse, when A is rectangular, the spectrum of B contains m − n zero53

eigenvalues that are not in the spectrum of A. Therefore, methods on B are unable54

to determine real zero singular values of A when m 6= n.55

Alternatively, methods that build Kk(C, v1) explicitly are only able to achieve56

accuracy O(‖C‖εmach) = O(‖A‖2εmach). for the eigenvalue residual on C, rC . Addi-57

tionally, rC can be related to the left singular residual, ru, by the following equation,58

(3) rC = ATAv − σ2v = σ(ATu− σv) = σru.59

Thus, if σ1 6= 0, the norm of the singular value residual when searching for the60

smallest singular value cannot be better than O(‖A‖κ(A)εmach), where κ(A) = σn

σ1
61

is the condition number of A. Despite the squaring of the spectrum, these methods62

usually converge faster than methods on B, both in theory and in practice, due to the63

extremal problem they solve. Furthermore, these methods are often able to find real64

zero singular values of A, as the corresponding eigenproblem on C does not introduce65

extraneous zero eigenvalues.66

In this work, we introduce a Golub-Kahan Davidson method (GKD), which at-67

tempts to keep the convergence of methods on C, but attain the full accuracy of68

methods on B. We define full accuracy to be
√
‖ru‖2 + ‖rv‖2 < ‖A‖εmach. First, we69

discuss related methods such as GKL, JDSVD, PLMR SVD and PHSVDS, followed70

by a detailed description of our method including implementation details. Lastly, we71

provide experimental results that highlight the capabilities of GKD compared to the72

current implementation of PHSVDS in the PRIMME software package.73

1.1. Related Work. GKL [11] builds two spaces including the same space as74

eigenmethods on C, Kk(ATA, v1), but it avoids directly multiplying vectors with75

ATA. By doing this, it also avoids the numerical problems associated with working76

on C. Without any additional matrix vector multiplications (matvecs), it also builds77

Kk(AAT , Av1). This is done by keeping two orthogonal spaces, U and V , where the78

last vector of V , vk, is used to expand U as uk = Avk and the last vector of U , uk,79

is used to expand V as vk+1 = ATuk. These new vectors are orthonormalized to the80

previous ones and the coefficients from this process are used to create the bidiagonal81

projection matrix UTAV . GKL solves the smaller singular value problem on this82

projection matrix to approximate the singular triplets. While GKL is considered to83

be one of the most accurate and effective algorithms for finding small singular triplets,84
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the standard version is unrestarted and cannot be preconditioned. Therefore, GKL85

tends to be computationally slow for poorly separated triplets of large matrices. Many86

restarted versions have been developed [3, 2, 8], but they are unable to maintain the87

convergence of the unrestarted method and they are generally slower than state-of-the-88

art eigenmethods for the smallest singular triplets. Additionally, restarted versions of89

GKL use implicit or thick restarting [18], without the locally optimal restarting feature90

that has been shown to be effective for eigenvalue problems [10] and is currently used91

in PRIMME as +k restarting.92

JDSVD [7] works on B by using two independent subspaces rather than one.93

Without using preconditioning or solving the correction equation, JDSVD builds sub-94

spaces that span the following Krylov spaces:95

(4) Uk = K k
2
(AAT , u1)⊕K k

2
(AAT , Av1), Vk = K k

2
(ATA, v1)⊕K k

2
(ATA,ATu1).96

These spaces are similar to the ones used in GKL, but crucially, each space is the sum97

of two different spaces of half dimension. This allows JDSVD to take advantage of98

initial guesses for both the left and right singular vectors. However, if we choose initial99

vectors that satisfy v1 = ATu1, the outer iteration of JDSVD becomes wasteful, as it100

builds exactly the same space of GKL with half the dimension. This is also true of101

eigensolvers on B as seen below,102

(5) B2

[
v
Av

]
=

[
0 AT

A 0

]2 [
v
Av

]
=

[
ATAv

AAT (Av)

]
.103

The inner correction equation used in JDSVD often allows for faster convergence104

than standard eigenvalue methods on B. Since JDSVD works on B, it can achieve105

full accuracy, but suffers from the same issues as other eigenmethods on B.106

PHSVDS [20] exploits the different advantages of eigenmethods on B and C by107

utilizing each in a two-stage method. The first stage can use any state-of-the-art108

eigensolver on C, which gives it fast convergence until either the user tolerance is met109

or until switching to a second stage using an eigensolver on B is necessary to reach110

the remaining user tolerance. Switching to an eigensolver on B after a fully converged111

first stage can effectively utilize good initial guesses from the first stage on C and thus112

avoid resolving the entire accuracy on an indefinite problem. Its implementation in113

PRIMME can use any of the two near-optimal eigensolvers, GD+k or JDQMR. This114

two-stage approach has been shown to be faster than eigensolvers on B alone, and115

typically has better performance than other SVD methods.116

While PHSVDS has shown significant improvements, it is still limited by the117

speed of eigensolvers on B when the matrix is ill-conditioned. It converges quite well118

for problems that do not need to switch stages, but eigensolvers on C cannot converge119

to high accuracy if the smallest singular value is nearly 0. Once it switches to the120

second stage on B, a significant slowdown occurs associated with interior problems121

and methods based on the augmented matrix. Obviously, an improved algorithm122

would converge with the near-optimal speed of GD+k on C down to O(‖A‖εmach).123

Recently, PLMR SVD [17] was developed, which is based on a stationary iteration124

that uses two separate four-term recurrences to build the following spaces,125

span{v(i), r(i)u , P (AT r(i)v − σr(i)u ), v(i−1)}

span{u(i), r(i)v , P (Ar(i)u − σr(i)v ), u(i−1)},
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where v(i) and u(i) are the i-th approximations of the right and left singular vectors126

respectively, and r
(i)
v = P (Av − σu) and r

(i)
u = P (ATu − σv) are their precondi-127

tioned right and left residuals respectively. Without a preconditioner, these spaces128

match those of GD+1 on B when we restrict GD to a max basis of 4 vectors. There129

may be additional benefits to building the spaces separately, but PLMR SVD lacks130

the subspace acceleration present in GD and JDSVD, which can provide superlinear131

convergence.132

2. Main Contribution. We believe that creating a restarted and precondi-133

tioned analogue to GKL will improve performance as long as we carefully choose our134

extraction and restarting methods to avoid losing key directions for convergence. This135

leads us to the following algorithm for GKD.136

2.1. Algorithm. Our algorithm is designed to mimic the nature of GKL by137

keeping two orthogonal spaces, V and Q, which are built without multiplying directly138

with ATA. Instead, we build Q such that AV = QR is the economy QR factorization139

of AV . Then, we extend V with a left residual based on a Galerkin extraction from R.140

Without preconditioning or +k restarting, this process builds the spaces Kq(A
TA, v1)141

and Kq(AA
T , v1) after q iterations or 2q matvecs like GKL, where both the extraction142

of approximate triplets and expansion of the spaces avoid a direct multiplication with143

C. This helps us to avoid the squaring of the norm and condition number that occurs144

with eigensolvers on C.145

Specifically, we extract approximate singular triplets from these spaces using a146

Rayleigh-Ritz procedure that is adapted for the SVD. Given search spaces Q ⊂ Rm147

and V ⊂ Rn, we can determine approximations (u, σ, v) with the following two148

Galerkin conditions on the right and left residuals,149

Av − σu ⊥ Q,
ATu− σv ⊥ V.

(6)150

Since u ∈ Q and v ∈ V, we can write u = Qx and v = V y, where Q and V form151

k-dimensional orthonormal bases of Q and V respectively. Additionally, AV = QR⇒152

QTAV = R, which allows us to rewrite the conditions as follows:153

QTAV y = σQTQx⇒ Ry = σx

V TATQx = σV TV y ⇒ RTx = σy.
(7)154

Therefore, solving the singular value decomposition onR with singular triplets (x, σ, y)155

satisfies both constraints and provide us approximations to the singular triplets of A.156

As in Generalized Davidson (GD) [5], we take the approximations from this157

Rayleigh-Ritz extraction and use them to form the left residual ru = ATu − σv.158

Then, we can choose to expand V with this residual directly, or with the precondi-159

tioned residual Pru where P is a suitable preconditioner for ATA. Unlike the JDSVD160

method, the space Q is expanded with Avi+1 rather than a preconditioned right161

residual. Note that our left residual is exactly ru = rC/σ and since162

V TATAV y = σy ⇒ RTRy = σy,163

GKD is equivalent to GD solving the eigenproblem on ATA in exact arithmetic. More-164

over, without preconditioning or restarting, it is also equivalent to GKL. However,165

GKD only shares numerical properties with GKL, whereas the accuracy of GD on166
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C is limited by the matrix on which it works. Combining this with thick and +k167

restarting gives us Algorithm 1 for seeking one singular triplet. This algorithm can168

easily be extended to find multiple singular triplets by using a locking method.169

Algorithm 1 GKD Iteration
1: Define target σ̃, initial vector v1, max basis size q, tolerance δ, preconditioner P , and i = 1
2: Build V = [v1], Q = [ Av1

‖Av1‖
], and R = ‖Av1‖

3: while
√
‖ru‖2 + ‖rv‖2 > ‖A‖δ do

4: while i < q do
5: Compute SVD of R
6: Choose the singular triplet (x, σr, y) nearest to the target σ̃
7: Save vold = y for +k restarting
8: Set u = Q(:, 1 : i)x, v = V (:, 1 : i)y
9: Compute left residual: ru = ATu− σrv

10: V (:, i+ 1) = Pru
11: Orthogonalize V (:, i+ 1) against V (:, 1 : i)
12: Q(:, i+ 1) = AV (:, i+ 1)
13: Orthogonalize Q(:, i+ 1) against Q and update R(:, i+ 1)
14: i = i+ 1
15: end while
16: call Algorithm 2 to restart
17: end while

Inner-outer solvers like JDSVD and the JDQMR implementation in PRIMME170

utilize extra matvecs inside of an inner solver as a refinement step to improve the171

convergence speed of the outer iterations by solving a linear system. These methods172

can provide a significant speedup in time for problems that have a relatively inex-173

pensive matrix-vector multiplication. GKD can be extended to a Jacobi-Davidson174

variant, GKJD, that solves the correction equation175

(8) (I − vvT )(ATAx− σ2x)(I − vvT ) = −ru176

instead of applying a preconditioner at line 10 of Algorithm 1. The inner solver is177

based on the symmetric Quasi-Minimal Residual method (QMRs) used in PRIMME’s178

JDQMR. Additionally, we include most of the dynamic stopping conditions used in179

PRIMME to stop QMRs in a near-optimal way [16].180

2.2. Restarting and Locking. Our restart procedure takes the current best181

approximations to the s singular triplets closest to the target, σ̃, and uses them182

together with those from the +k restarting to compress V , Q and R down to dimension183

s+ k. The steps for building the restarted V are seen in lines 1-7 of Algorithm 2.184

The simplest method to restart Q and R is to set them as QQ̃ and R̃ respectively,185

where Rt = Q̃R̃ is the QR factorization of Rt with t = [Y1, vnew] from line 6 of186

Algorithm 2. This can introduce numerical error of magnitude O(‖R‖εmach), which187

can be as large as O(‖A‖εmach). However, this error accumulates over many restarts,188

eventually causing loss of convergence. It is possible to intelligently compute Q and189

R to avoid direct multiplications with R through the already available SVD of R as190

seen below,191

AV t = QRt = Q
[
X1 X2

] [Σ
(1)
r 0

0 Σ
(2)
r

] [
I 0
0 Y T2 vold

]
= Q

[
X1 X2

] [Σ1 0

0 Σ
(2)
r Y T2 vold

]
.

(9)192
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Algorithm 2 Restart Procedure
1: Define restart size s and target σ̃
2: Compute SVD of R = XΣrY T

3: Choose s singular triplets of R closest to σ̃ (called (X1,Σ
(1)
r , Y1))

4: Save the remaining singular triplets from the SVD of R, (X2,Σ
(2)
r , Y2)

5: vnew ← Orthogonalize saved +k vectors [vold; 0] from main iteration against Y1
6: t = [Y1, vnew]
7: V = V t
8: if Reset criteria is met then
9: Reorthogonalize V and build Q and R such that AV = QR

10: else
11: QR factorize Σ

(2)
r Y T

2 vold = Q̃R̃

12: Set Q = Q[X1X2Q̃] and R =

[
Σ

(1)
r 0

0 R̃

]
.

13: end if

From (9), the new Q and R can be obtained with minimal effort by performing a193

QR factorization Σ
(2)
r Y T2 vold = Q̃R̃. The restarted Q and R are given in Line 12 of194

Algorithm 2.195

To accurately find many singular triplets, we implement two versions of locking.196

The first, hard-locking, locks singular vectors out of the search space explicitly once197

the required user tolerance is reached. At every iteration, we orthogonalize the vector198

added to V against the locked right singular vectors, as well as the previous vectors199

in V . In practice, the vectors added to Q do not require orthogonalization against the200

locked left singular vectors. The second, soft-locking, merely flags converged singular201

triplets while leaving them in the basis.202

In some rare cases, we can see stagnation due to hard locking. This is caused by203

the error still present in the locked vectors, which may contain critical directions for204

other singular triplets [15]. We have not seen any matrices in this paper that exhibit205

this behavior. However, soft-locking can provide left and right singular vectors that206

are orthogonal to machine precision, while hard-locking only obtains left singular207

vectors orthogonal up to O(‖A‖δ). Therefore, we present soft-locking results in the208

following section. We intend to address the issues with hard-locking more thoroughly209

in the future.210

2.3. Resetting. Due to AV = QR, the right residual rv = Av − σu should be211

zero throughout our procedure,212

(10) rv = Av − σu = AV y −Q(σx) = AV y −QRy = (AV −QR)y = 0.213

Generally, this means we can avoid the extra matrix-vector multiplication (or storage214

for AV ) necessary to compute rv. In practice though, ‖rv‖ cannot be better than215

O(‖A‖εmach) due to the multiplication with A required to compute it. Worse, ‖rv‖216

grows as O(
√

numRestarts‖A‖εmach), which has also been noticed in [19]. Therefore,217

our method must calculate ‖rv‖ explicitly when ‖ru‖ < ‖A‖δ, where δ is the user218

selected tolerance. This ensures we meet the convergence criteria of Algorithm 1.219

The errors we observe in rv may grow large enough to exceed the user tolerance,220

which would make convergence impossible. These errors come from two main sources.221

The first source is from the loss of orthogonality of V , and the second is the loss222

of accuracy of the QR factorization. We have found experimentally that both of223

these errors can impede or halt convergence as the SVD of R no longer corresponds224

to the singular triplets in A. We note that this issue is rare and only occurs when225
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δ ≈ εmach
√

numRestarts. To correct these errors, we implement a resetting procedure226

that reorthogonalizes V , and rebuilds Q and R directly from AV .227

It is critical to only reset sparingly, as rebuilding Q and R from scratch takes228

s + k matvecs to obtain AV and a full QR factorization. Additionally, resetting can229

cause an increase in the residual norm by a factor of κ(A), which may require a few230

iterations to reduce back to its previous level. In order to track the errors mentioned231

above, we have devised two inexpensive criteria that help to avoid unnecessary resets.232

From (10), we can estimate errors in the QR factorization directly from the norm of233

the right residual. We choose to reset when ‖ru‖ < 1.25‖rv‖, as the errors in the QR234

factorization directly impact the convergence of ru. Experimentally, we have found a235

few cases where the small 25% buffer between ru and rv is needed to detect potential236

stagnation.237

The error in the orthogonality of V may also cause failures to converge. Therefore,238

we estimate how large ‖E‖ = ‖V TV −I‖ can be before it begins to affect convergence.239

Based on the Galerkin conditions, we should have solved the equivalent eigenproblem,240

RTRy = V TATAV y = σ2V TV y. In practice, we solve RTRy = V TATAV y = σ2y241

regardless of the orthonormality of V . Therefore, we obtain a Ritz vector and Ritz242

value that will not converge to a 0 residual for the original problem, since V TV 6= I.243

However, the Ritz pair produced by our inexact Galerkin can be considered as a Ritz244

pair of an exact Galerkin condition applied to the nearby generalized eigenproblem245

ATAV y = σ2MV y where M = V (V TV )−2V T as seen below,246

(11) V TATAV y = σ2V TMV y = σ2V TV (V TV )−2V TV y = σ2y.247

In order to correctly monitor and maintain convergence, the residual we use for248

expansion, rC = σru = ATAv−σ2v, should not drift too far from this exact residual,249

rE = ATAv − σ2V (V TV )−2V T v, where v = V y. Assuming ‖E‖ < 1, we have250

‖rE − rC‖ = σ2‖V y − V (V TV )−1y‖
≤ σ2‖V ‖‖I − (V TV )−1‖ = σ2‖V ‖‖I − (I + E)−1‖
≤ σ2(1 + ‖E‖)‖(I + E)−1‖‖E‖

≤ σ2(1 + ‖E‖)

∥∥∥∥∥I +

∞∑
i=1

Ei

∥∥∥∥∥ ‖E‖
= σ2‖E‖+O(σ2‖E‖2).

(12)251

Since we want ru = rC/σ to converge to tolerance ‖A‖δ, we limit the distance ‖rE −252

rC‖ < ‖A‖δσ. Thus, from (12), we perform a reset when ‖E‖ ≥ ‖A‖δ/σ. In practice253

we have noticed very few situations where this criteria caused a reset.254

3. Numerical Results. To verify our algorithm’s performance, we utilized the255

same matrices given in the original PHSVDS publication [20]. These matrices are256

publicly available through the University of Florida Sparse Matrix Collection [4] and257

represent real world applications. These problems are quite difficult for iterative258

solvers and are used to stress test the capabilities of GKD and PHSVDS. Since these259

matrices are sparse, we provide their dimensions and the number of non-zero entries260

of A, nnz(A), as well as the norm of A, ‖A‖, the condition number of A, κ(A), and261

the gap ratio for σ1, γ1 = (σ2 − σ1)/(σn − σ2).262

The matrices listed in Table 1 and Table 2 are listed from least to most difficult263

(left to right) as generally their condition numbers increase, and the gap ratios for264
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Matrix pde2961 dw2048 fidap4 jagmesh8 wang3 lshp3025
dimension 2961 2048 1601 1141 26064 3025

nnz(A) 14585 10114 31837 7465 77168 120833
κ(A) 9.5E+2 5.3E+3 5.2E+3 5.9E+4 1.1E+4 2.2E+5
‖A‖ 1.0E+1 1.0E+0 1.6E+0 6.8E+0 2.7E-1 7.0E+0
γ1 8.2E-3 2.6E-3 1.5E-3 1.7E-3 7.4E-5 1.8E-3

Table 1
Basic Properties of Square Matrices

Matrix well1850 lp ganges deter4 plddb ch lp bnl2
rows 1850 1309 3235 3049 3700 2324

columns 712 1706 9133 5069 8291 4486
nnz(A) 8755 6937 19231 10839 24102 14996
κ(A) 1.1E+2 2.1E+4 3.7E+2 1.2E+4 2.8E+3 7.8E+3
‖A‖ 1.8E+0 4.0E+0 1.0E+1 1.4E+2 7.6E+2 2.1E+2
γ1 3.0E-3 1.1E-1 1.1E-1 4.2E-3 1.6E-3 7.1E-3

Table 2
Basic Properties of Rectangular Matrices

their smallest singular values decrease. It should be noted that none of these matrices265

are particularly poorly conditioned, and do not require the second stage in PHSVDS266

to improve the singular vector estimates more than a few orders of magnitude. There-267

fore, the benefits we would expect to gain on very poorly conditioned problems are268

significantly larger.269

We restrict GKD and PRIMME SVDS to a maximum basis size of 35 vectors,270

a minimum restart size of 15 vectors and a user tolerance of δ = 1E-14. We also271

enforce two retained vectors from the previous iteration (for +2 restarting) and soft-272

locking. Due to the interior nature of the augmented method in PRIMME SVDS,273

we are unable to set soft-locking for the second stage while searching for the smallest274

singular triplets. It should be noted that hard-locking generally improves performance275

for our method when searching for more than one singular value, but does not provide276

the same orthogonality guarantees and is subject to the numerical issues mentioned277

earlier.278

We compare PRIMME SVDS MIN MATVECS (GD+k) against our GKD, and279

PRIMME SVDS MIN TIME (JDQMR) against GKJD. As shown in Figure 1, GKD280

and GKJD require fewer matrix-vector multiplications than their PRIMME SVDS281

counterparts for nearly all matrices. Also, the matrices that show the largest benefits282

are lshp3025, wang3, jagmesh8, and lp ganges. As expected, these correspond to the283

matrices that required more significant use of the second stage in PRIMME SVDS, due284

to their larger κ(A). For most cases, we see a drop off in performance when searching285

for the 10 smallest singular values, but this is mostly caused by soft-locking. Using286

soft-locking in the first stage of PRIMME SVDS can improve the initial guesses to287

the second stage in some cases, negating the advantage GKD has over the two-stage288

method.289

For rectangular matrices, we also tested whether our method could find a true290

zero singular value by adding an extra column equal to the first column. GKD is able291

to find the real zero in all cases. PRIMME SVDS will not return this numerically292

zero value, as outlined in its documentation, since its second stage has no way to293

distinguish real zeros from the null space created by the augmented matrix.294

For preconditioning, we provide a preconditioner built using Matlab’s ILU with295

the ilutp factorization, a drop-tolerance of 1E-3, and a pivot threshold of 1.0. Our296
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Finding 1 or 10 Smallest with Square Matrices (tol = 1e-14)

lshp3025 wang3 jagmesh8 fidap4 dw2048 pde2961
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Finding 1 or 10 Smallest with Rectangular Matrices (tol = 1e-14)

lp_bnl2 ch plddb deter4 lp_ganges well1850
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lshp3025 wang3 jagmesh8 fidap4 dw2048 pde2961
GKD 27635 17651 13137 12066 4474 5661

GKD 10SV 112566 106630 46346 54483 21367 25815
GKJD 35660 17620 16686 12726 5358 6504

GKJD 10SV 133333 100103 55225 55019 27413 29333

lp bnl2 ch plddb deter4 lp ganges well1850
GKD 36087 24665 5670 752 604 1212

GKD 10SV 163167 184704 19515 26404 5519 4683
GKJD 29988 28358 7732 1038 728 1528

GKJD 10SV 95233 142563 24709 20487 7183 6515

Fig. 1. Unpreconditioned Comparison against Primme MIN MATVECS (PMMV) and Primme
MIN TIME (PMT) for Square and Rectangular Matrices. The tables provide the matvecs needed by
GKD and GKJD.

Finding 1 or 10 Smallest with an LU Preconditioner (tol = 1e-14)

lshp3025 wang3 jagmesh8 fidap4 dw2048 pde2961

Matrix Name
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PMMV/GKD

PMMV/GKD 10SV

PMT/GKJD

PMT/GKJD 10SV

lshp3025 wang3 jagmesh8 fidap4 dw2048 pde2961
GKD 60 136 42 50 48 38

GKD 10SV 469 839 301 413 413 315
GKJD 1038 298 120 456 110 134

GKJD 10SV 2409 1515 943 1537 1195 901

Fig. 2. Preconditioned Comparison against Primme MIN MATVECS (PMMV) and Primme
MIN TIME (PMT) for Square Matrices. The table provides the matvecs needed by GKD and GKJD.

results show the significant benefit of an effective preconditioner, as all problems re-297

quired less than 150 matvecs when searching for one singular value with GKD. How-298

ever, these preconditioners sometimes caused significant issues for PRIMME SVDS,299

as it was unable to converge for lshp3025 when searching for the 10 smallest singular300

values, and exhibited significant difficulty converging to 10 singular values for wang3,301

jagmesh8 and fidap4. These issues are caused by PRIMME SVDS’ first stage trying302

to achieve full accuracy on C. The two cases where PRIMME SVDS outperforms303

our method (lshp3025 and fidap4 searching for 1 SV) are the result of a few extra304

iterations within the inner method of GKJD. This is due to further optimizations305

built into the QMRs dynamic stopping criteria of PRIMME SVDS.306

4. Conclusions. We have presented GKD, a new method for finding the small-307

est singular triplets of large sparse matrices to full accuracy. Our method works308

iteratively, under limited memory, with preconditioners, while including features such309

as soft-locking with orthogonality guarantees, +k restarting, and the ability to find310

real zero singular values in both square and rectangular matrices. Additionally, GKJD311

uses an inner solver for the ATA correction equation into GKD, which can lower exe-312

cution time when the matrix-vector multiplication operation is inexpensive. Both of313

these methods have shown to be more reliable and efficient than PHSVDS, and thus314

over other SVD methods, for nearly all cases.315
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